Conditional Mean and Quantile Dependence Testing in High Dimension

نویسندگان

  • Xianyang Zhang
  • Shun Yao
  • Xiaofeng Shao
چکیده

Motivated by applications in biological science, we propose a novel test to assess the conditional mean dependence of a response variable on a large number of covariates. Our procedure is built on the martingale difference divergence recently proposed in Shao and Zhang (2014), and it is able to detect certain type of departure from the null hypothesis of conditional mean independence without making any specific model assumptions. Theoretically, we establish the asymptotic normality of the proposed test statistic under suitable assumption on the eigenvalues of a Hermitian operator, which is constructed based on the characteristic function of the covariates. These conditions can be simplified under banded dependence structure on the covariates or Gaussian design. To account for heterogeneity within the data, we further develop a testing procedure for conditional quantile independence at a given quantile level and provide an asymptotic justification. Empirically, our test of conditional mean independence delivers comparable results to the competitor, which was constructed under the linear model framework, when the underlying model is linear. It significantly outperforms the competitor when the conditional mean admits a nonlinear form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Test of Conditional Quantile Independence with an Application to BanksSystemic Risk

This paper proposes a fully nonparametric procedure for testing conditional quantile independence. The conditional quantile framework provides a more general and ‡exible tool for investigating the conditional dependence structure of the variables of interest in comparison to a single measure of conditional location. Despite its generality there has been little research on the conditional quanti...

متن کامل

A Study of Testing Mean Reversion in the Inflation Rate of Iran’s Provinces: New Evidence Using Quantile Unit Root Test

T his paper is to examine the mean reverting properties of inflation rates for Iran’s 25 provinces over the period from 1990:4 to 2017:7. To the end, we use various conventional univariate linear and non-linear unit root tests, as well as quantile unit root test by Koenker and Xiao (2004). Results of conventional unit root tests indicate that the null hypothesis of the unit root test...

متن کامل

Semiparametric Quantile Regression with High-dimensional Covariates.

This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mil...

متن کامل

L1-Norm Quantile Regression

Classical regression methods have focused mainly on estimating conditional mean functions. In recent years, however, quantile regression has emerged as a comprehensive approach to the statistical analysis of response models. In this article we consider the L1-norm (LASSO) regularized quantile regression (L1-norm QR), which uses the sum of the absolute values of the coefficients as the penalty. ...

متن کامل

2 1 O ct 2 01 6 Vector quantile regression beyond correct specification

This paper studies vector quantile regression (VQR), which is a way to model the dependence of a random vector of interest with respect to a vector of explanatory variables so to capture the whole conditional distribution, and not only the conditional mean. The problem of vector quantile regression is formulated as an optimal transport problem subject to an additional mean-independence conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017